Big Island Rocking… 5.0 Magnitude Earthquake Followed by a 3.0

Magnitude 5.0
Location 19.331°N, 155.120°W
Depth 8 km (5.0 miles)
  • 16 km (10 miles) S (176°) from Fern Forest, HI
  • 18 km (11 miles) S (185°) from Eden Roc, HI
  • 18 km (11 miles) SE (137°) from Volcano, HI
  • 33 km (20 miles) SW (223°) from Hawaiian Beaches, HI
  • 42 km (26 miles) S (185°) from Hilo, HI
  • 358 km (222 miles) SE (127°) from Honolulu, HI
Location Uncertainty horizontal +/- 0.5 km (0.3 miles); depth +/- 0.3 km (0.2 miles)
Parameters Nph= 74, Dmin=5 km, Rmss=0.13 sec, Gp=133°,
M-type=duration magnitude (Md), Version=1
Event ID hv60302526

Magnitude 3.0
Location 19.342°N, 155.130°W
Depth 6.5 km (4.0 miles)
  • 14 km (9 miles) S (180°) from Fern Forest, HI
  • 16 km (10 miles) SE (137°) from Volcano, HI
  • 17 km (11 miles) S (189°) from Eden Roc, HI
  • 33 km (20 miles) SW (225°) from Hawaiian Beaches, HI
  • 41 km (25 miles) S (187°) from Hilo, HI
  • 356 km (221 miles) SE (127°) from Honolulu, HI
Location Uncertainty horizontal +/- 0.7 km (0.4 miles); depth +/- 0.7 km (0.4 miles)
Parameters Nph= 52, Dmin=6 km, Rmss=0.14 sec, Gp=176°,
M-type=duration magnitude (Md), Version=1
Event ID hv60302551

Unprecedented, Man-Made Trends in Ocean’s Acidity… Hawaiian Islands Will Be First to Feel Impact

Nearly one-third of CO2 emissions due to human activities enters the world’s oceans. By reacting with seawater, CO2 increases the water’s acidity, which may significantly reduce the calcification rate of such marine organisms as corals and mollusks. The extent to which human activities have raised the surface level of acidity, however, has been difficult to detect on regional scales because it varies naturally from one season and one year to the next, and between regions, and direct observations go back only 30 years.

These are yellow tangs frolicking among corals. Credit: Dwayne Meadows, NOAA

Combining computer modeling with observations, an international team of scientists concluded that anthropogenic CO2 emissions over the last 100 to 200 years have already raised ocean acidity far beyond the range of natural variations. The study is published in the January 22 online issue of Nature Climate Change.

The team of climate modelers, marine conservationists, ocean chemists, biologists and ecologists, led by Tobias Friedrich and Axel Timmermann at the International Pacific Research Center, University of Hawaii at Manoa, came to their conclusions by using Earth system models that simulate climate and ocean conditions 21,000 years back in time, to the Last Glacial Maximum, and forward in time to the end of the 21st century. They studied in their models changes in the saturation level of aragonite (a form of calcium carbonate) typically used to measure of ocean acidification. As acidity of seawater rises, the saturation level of aragonite drops. Their models captured well the current observed seasonal and annual variations in this quantity in several key coral reef regions.

Today’s levels of aragonite saturation in these locations have already dropped five times below the pre-industrial range of natural variability. For example, if the yearly cycle in aragonite saturation varied between 4.7 and 4.8, it varies now between 4.2 and 4.3, which – based on another recent study – may translate into a decrease in overall calcification rates of corals and other aragonite shell-forming organisms by 15%. Given the continued human use of fossil fuels, the saturation levels will drop further, potentially reducing calcification rates of some marine organisms by more than 40% of their pre-industrial values within the next 90 years.

“Any significant drop below the minimum level of aragonite to which the organisms have been exposed to for thousands of years and have successfully adapted will very likely stress them and their associated ecosystems,” says lead author Postdoctoral Fellow Tobias Friedrich.

“In some regions, the man-made rate of change in ocean acidity since the Industrial Revolution is hundred times greater than the natural rate of change between the Last Glacial Maximum and pre-industrial times,” emphasizes Friedrich. “When Earth started to warm 17,000 years ago, terminating the last glacial period, atmospheric CO2 levels rose from 190 parts per million (ppm) to 280 ppm over 6,000 years. Marine ecosystems had ample time to adjust. Now, for a similar rise in CO2 concentration to the present level of 392 ppm, the adjustment time is reduced to only 100 – 200 years.”

On a global scale, coral reefs are currently found in places where open-ocean aragonite saturation reaches levels of 3.5 or higher. Such conditions exist today in about 50% of the ocean – mostly in the tropics. By end of the 21st century this fraction is projected to be less than 5%. The Hawaiian Islands, which sit just on the northern edge of the tropics, will be one of the first to feel the impact.

The upper panels shows simulated surface aragonite saturation for the years 1800, 2012 and 2100, respectively. White dots indicate present-day main coral reef locations. The lower panels shows atmospheric CO2 concentration in parts per million simulated for the years 1750 to 2100. Credit: Tobias Friedrich

The study suggests that some regions, such as the eastern tropical Pacific, will be less stressed than others because greater underlying natural variability of seawater acidity helps to buffer anthropogenic changes. The aragonite saturation in the Caribbean and the western Equatorial Pacific, both biodiversity hotspots, shows very little natural variability, making these regions particularly vulnerable to human-induced ocean acidification.

“Our results suggest that severe reductions are likely to occur in coral reef diversity, structural complexity and resilience by the middle of this century,” says co-author Professor Axel Timmermann.”

Navy Plans to Deploy a “Great Green Fleet” Powered by Alternative Fuels

I’ve had the opportunities to do a lot of cool stuff in the last few years with the US Navy.  Everything from getting flown out to the middle of the Pacific Ocean and landing on the USS Ronald Reagan and getting catapulted off it, to going out to sea with the Destroyer USS Chung Hoon, and just recently getting a tour of the nuclear powered submarine the USS Cheyenne.

Commander Coins I've received

I just read that next year the US Navy is going to be doing some exercises off the Hawaii coast that will involve the fleet using alternative fuels:

This year off the Hawaiian coast, an exercise will demonstrate a green strike group of Navy ships, and by 2016 the Navy plans to deploy a “Great Green Fleet” powered entirely by alternative fuels, said Chris Tindal, the director of operational energy in the Office of the Deputy Assistant Secretary of the Navy for Energy.

For the Hawaii exercise, “we’ve got a carrier and a submarine on nuclear power, but then we also will have the air wing on the carrier using biofuels, along with two destroyers and a cruiser,” Tindal said. “That’s going to be a big opportunity for us to show that it really can happen…”

This sounds like a real good opportunity for Big Island farmers to start getting more into the Biofuel crops real soon!  Now I just need to get in good with the new Admiral that just took charge of the Pacific Fleet.  Admiral Cecil Haney… can you hear me… I’d love to check out these exercises!